문제
(취익)B100 요원, 요란한 옷차림을 한 서커스 예술가 한 쌍이 한 도시의 거리들을 이동하고 있다. 너의 임무는 그들이 어디로 가고 있는지 알아내는 것이다. 우리가 알아낸 것은 그들이 s지점에서 출발했다는 것, 그리고 목적지 후보들 중 하나가 그들의 목적지라는 것이다. 그들이 급한 상황이기 때문에 목적지까지 우회하지 않고 최단거리로 갈 것이라 확신한다. 이상이다. (취익)
어휴! (요란한 옷차림을 했을지도 모를) 듀오가 어디에도 보이지 않는다. 다행히도 당신은 후각이 개만큼 뛰어나다. 이 후각으로 그들이 g와 h 교차로 사이에 있는 도로를 지나갔다는 것을 알아냈다.
이 듀오는 대체 어디로 가고 있는 것일까?
예제 입력의 두 번째 케이스를 시각화한 것이다. 이 듀오는 회색 원에서 두 검은 원 중 하나로 가고 있고 점선으로 표시된 도로에서 냄새를 맡았다. 따라서 그들은 6으로 향하고 있다.
출력
테스트 케이스마다
- 입력에서 주어진 목적지 후보들 중 불가능한 경우들을 제외한 목적지들을 공백으로 분리시킨 오름차순의 정수들로 출력한다.
W3sicHJvYmxlbV9pZCI6IjkzNzAiLCJwcm9ibGVtX2xhbmciOiIwIiwidGl0bGUiOiJcdWJiZjhcdWQ2NTVcdWM3NzggXHViM2M0XHVjYzI5XHVjOWMwIiwiZGVzY3JpcHRpb24iOiI8cD4oXHVjZGU4XHVjNzc1KUIxMDAgXHVjNjk0XHVjNmQwLCBcdWM2OTRcdWI3ODBcdWQ1NWMgXHVjNjM3XHVjYzI4XHViOWJjXHVjNzQ0IFx1ZDU1YyBcdWMxMWNcdWNlZTRcdWMyYTQgXHVjNjA4XHVjMjIwXHVhYzAwJm5ic3A7XHVkNTVjIFx1YzMwZFx1Yzc3NCBcdWQ1NWMgXHViM2M0XHVjMmRjXHVjNzU4IFx1YWM3MFx1YjlhY1x1YjRlNFx1Yzc0NCBcdWM3NzRcdWIzZDlcdWQ1NThcdWFjZTAgXHVjNzg4XHViMmU0LiBcdWIxMDhcdWM3NTggXHVjNzg0XHViYjM0XHViMjk0IFx1YWRmOFx1YjRlNFx1Yzc3NCBcdWM1YjRcdWI1MTRcdWI4NWMgXHVhYzAwXHVhY2UwIFx1Yzc4OFx1YjI5NFx1YzljMCBcdWM1NGNcdWM1NDRcdWIwYjRcdWIyOTQgXHVhYzgzXHVjNzc0XHViMmU0LiBcdWM2YjBcdWI5YWNcdWFjMDAgXHVjNTRjXHVjNTQ0XHViMGI4IFx1YWM4M1x1Yzc0MCBcdWFkZjhcdWI0ZTRcdWM3NzQgc1x1YzljMFx1YzgxMFx1YzVkMFx1YzExYyBcdWNkOWNcdWJjMWNcdWQ1ODhcdWIyZTRcdWIyOTQgXHVhYzgzLCBcdWFkZjhcdWI5YWNcdWFjZTAgXHViYWE5XHVjODAxXHVjOWMwIFx1ZDZjNFx1YmNmNFx1YjRlNCBcdWM5MTEgXHVkNTU4XHViMDk4XHVhYzAwIFx1YWRmOFx1YjRlNFx1Yzc1OCBcdWJhYTlcdWM4MDFcdWM5YzBcdWI3N2NcdWIyOTQgXHVhYzgzXHVjNzc0XHViMmU0LiBcdWFkZjhcdWI0ZTRcdWM3NzQgXHVhZTA5XHVkNTVjIFx1YzBjMVx1ZDY2OVx1Yzc3NFx1YWUzMCBcdWI1NGNcdWJiMzhcdWM1ZDAmbmJzcDtcdWJhYTlcdWM4MDFcdWM5YzBcdWFlNGNcdWM5YzAgXHVjNmIwXHVkNjhjXHVkNTU4XHVjOWMwIFx1YzU0YVx1YWNlMCBcdWNkNWNcdWIyZThcdWFjNzBcdWI5YWNcdWI4NWMmbmJzcDtcdWFjMDggXHVhYzgzXHVjNzc0XHViNzdjIFx1ZDY1NVx1YzJlMFx1ZDU1Y1x1YjJlNC4gXHVjNzc0XHVjMGMxXHVjNzc0XHViMmU0LiAoXHVjZGU4XHVjNzc1KTxcL3A+XHJcblxyXG48cD5cdWM1YjRcdWQ3MzQhJm5ic3A7KFx1YzY5NFx1Yjc4MFx1ZDU1YyBcdWM2MzdcdWNjMjhcdWI5YmNcdWM3NDQgXHVkNTg4XHVjNzQ0XHVjOWMwXHViM2M0IFx1YmFhOFx1Yjk3YykmbmJzcDtcdWI0YzBcdWM2MjRcdWFjMDAgXHVjNWI0XHViNTE0XHVjNWQwXHViM2M0IFx1YmNmNFx1Yzc3NFx1YzljMCBcdWM1NGFcdWIyOTRcdWIyZTQuIFx1YjJlNFx1ZDU4OVx1ZDc4OFx1YjNjNCBcdWIyZjlcdWMyZTBcdWM3NDAgXHVkNmM0XHVhYzAxXHVjNzc0IFx1YWMxY1x1YjljY1x1ZDA3YyBcdWI2ZjBcdWM1YjRcdWIwOThcdWIyZTQuIFx1Yzc3NCBcdWQ2YzRcdWFjMDFcdWM3M2NcdWI4NWMgXHVhZGY4XHViNGU0XHVjNzc0Jm5ic3A7Z1x1YzY0MCBoIFx1YWQ1MFx1Y2MyOFx1Yjg1YyBcdWMwYWNcdWM3NzRcdWM1ZDAgXHVjNzg4XHViMjk0IFx1YjNjNFx1Yjg1Y1x1Yjk3YyBcdWM5YzBcdWIwOThcdWFjMTRcdWIyZTRcdWIyOTQgXHVhYzgzXHVjNzQ0IFx1YzU0Y1x1YzU0NFx1YjBjOFx1YjJlNC48XC9wPlxyXG5cclxuPHA+XHVjNzc0IFx1YjRjMFx1YzYyNFx1YjI5NCBcdWIzMDBcdWNjYjQgXHVjNWI0XHViNTE0XHViODVjIFx1YWMwMFx1YWNlMCBcdWM3ODhcdWIyOTQgXHVhYzgzXHVjNzdjXHVhZTRjPzxcL3A+XHJcblxyXG48cCBzdHlsZT1cInRleHQtYWxpZ246IGNlbnRlcjtcIj48aW1nIGFsdD1cIlwiIHNyYz1cIlwvdXBsb2FkXC9pbWFnZXNcL2Rlc3RpbmF0aW9uLnBuZ1wiIHN0eWxlPVwiZm9udC1zaXplOm1lZGl1bTsgaGVpZ2h0OjIzMHB4OyB3aWR0aDoyMzZweFwiIFwvPjxcL3A+XHJcblxyXG48cD5cdWM2MDhcdWM4MWMgXHVjNzg1XHViODI1XHVjNzU4IFx1YjQ1MCBcdWJjODhcdWM5ZjggXHVjZjAwXHVjNzc0XHVjMmE0XHViOTdjIFx1YzJkY1x1YWMwMVx1ZDY1NFx1ZDU1YyBcdWFjODNcdWM3NzRcdWIyZTQuIFx1Yzc3NCBcdWI0YzBcdWM2MjRcdWIyOTQgXHVkNjhjXHVjMGM5IFx1YzZkMFx1YzVkMFx1YzExYyBcdWI0NTAgXHVhYzgwXHVjNzQwIFx1YzZkMCBcdWM5MTEgXHVkNTU4XHViMDk4XHViODVjIFx1YWMwMFx1YWNlMCBcdWM3ODhcdWFjZTAgXHVjODEwXHVjMTIwXHVjNzNjXHViODVjIFx1ZDQ1Y1x1YzJkY1x1YjQxYyBcdWIzYzRcdWI4NWNcdWM1ZDBcdWMxMWMgXHViMGM0XHVjMGM4XHViOTdjIFx1YjllMVx1YzU1OFx1YjJlNC4gXHViNTMwXHViNzdjXHVjMTFjIFx1YWRmOFx1YjRlNFx1Yzc0MCA2XHVjNzNjXHViODVjIFx1ZDVhNVx1ZDU1OFx1YWNlMCBcdWM3ODhcdWIyZTQuPFwvcD5cclxuIiwiaW5wdXQiOiI8cD5cdWNjYWIgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMFx1YjI5NCBcdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHVjNzU4IFQoMSAmbGU7IFQgJmxlOyAxMDApXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gXHVhYzAxIFx1ZDE0Y1x1YzJhNFx1ZDJiOCBcdWNmMDBcdWM3NzRcdWMyYTRcdWI5YzhcdWIyZTQ8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5cdWNjYWIgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCAzXHVhYzFjXHVjNzU4IFx1YzgxNVx1YzIxOCZuYnNwO24sIG0sIHQgKDIgJmxlOyBuICZsZTsgMiAwMDAsIDEgJmxlOyBtICZsZTsgNTAgMDAwIGFuZCAxICZsZTsgdCAmbGU7IDEwMClcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBcdWFjMDFcdWFjMDEgXHVhZDUwXHVjYzI4XHViODVjLCBcdWIzYzRcdWI4NWMsIFx1YmFhOVx1YzgwMVx1YzljMCBcdWQ2YzRcdWJjZjRcdWM3NTggXHVhYzFjXHVjMjE4XHVjNzc0XHViMmU0LjxcL2xpPlxyXG5cdDxsaT5cdWI0NTAgXHViYzg4XHVjOWY4IFx1YzkwNFx1YzVkMCZuYnNwOzNcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4Jm5ic3A7cywgZywmbmJzcDtoICgxICZsZTsgcywgZywgaCAmbGU7IG4pXHVhYzAwIFx1YzhmY1x1YzViNFx1YzljNFx1YjJlNC4gc1x1YjI5NCBcdWM2MDhcdWMyMjBcdWFjMDBcdWI0ZTRcdWM3NTggXHVjZDljXHViYzFjXHVjOWMwXHVjNzc0XHVhY2UwLCBnLCBoXHViMjk0IFx1YmIzOFx1YzgxYyBcdWMxMjRcdWJhODVcdWM1ZDAgXHViMDk4XHVjNjQwJm5ic3A7XHVjNzg4XHViMmU0LiAoZyAmbmU7IGgpPFwvbGk+XHJcblx0PGxpPlx1YWRmOCBcdWIyZTRcdWM3NGMgbVx1YWMxY1x1Yzc1OCBcdWFjMDEgXHVjOTA0XHViOWM4XHViMmU0IDNcdWFjMWNcdWM3NTggXHVjODE1XHVjMjE4Jm5ic3A7YSwgYiwgZCAoMSAmbGU7IGEgJmx0OyBiICZsZTsgbiBhbmQgMSAmbGU7IGQgJmxlOyAxIDAwMClcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWM0XHViMmU0LiBhXHVjNjQwIGIgXHVjMGFjXHVjNzc0XHVjNWQwIFx1YWUzOFx1Yzc3NCBkXHVjNzU4IFx1YzU5MVx1YmMyOVx1ZDVhNSBcdWIzYzRcdWI4NWNcdWFjMDAgXHVjNzg4XHViMmU0XHViMjk0IFx1YjczYlx1Yzc3NFx1YjJlNC48XC9saT5cclxuXHQ8bGk+XHVhZGY4IFx1YjJlNFx1Yzc0YyB0XHVhYzFjXHVjNzU4IFx1YWMwMSBcdWM5MDRcdWI5YzhcdWIyZTQgXHVjODE1XHVjMjE4IHhcdWFjMDAgXHVjOGZjXHVjNWI0XHVjOWMwXHViMjk0XHViMzcwLCB0XHVhYzFjXHVjNzU4IFx1YmFhOVx1YzgwMVx1YzljMCBcdWQ2YzRcdWJjZjRcdWI0ZTRcdWM3NDQgXHVjNzU4XHViYmY4XHVkNTVjXHViMmU0LiBcdWM3NzQgdFx1YWMxY1x1Yzc1OCBcdWM5YzBcdWM4MTBcdWI0ZTRcdWM3NDAgXHVjMTFjXHViODVjIFx1YjJlNFx1Yjk3OCBcdWM3MDRcdWNlNThcdWM3NzRcdWJhNzAgXHViYWE4XHViNDUwJm5ic3A7c1x1YzY0MCBcdWFjMTlcdWM5YzAgXHVjNTRhXHViMmU0LjxcL2xpPlxyXG48XC91bD5cclxuXHJcbjxwPlx1YWQ1MFx1Y2MyOFx1Yjg1YyBcdWMwYWNcdWM3NzRcdWM1ZDBcdWIyOTQgXHViM2M0XHViODVjXHVhYzAwIFx1YjljZVx1YzU0NFx1YmQxMFx1YzU3YyAxXHVhYzFjXHVjNzc0XHViMmU0LiBtXHVhYzFjXHVjNzU4IFx1YzkwNCBcdWM5MTFcdWM1ZDBcdWMxMWMgZ1x1YzY0MCBoIFx1YzBhY1x1Yzc3NFx1Yzc1OCBcdWIzYzRcdWI4NWNcdWI5N2MgXHViMDk4XHVkMGMwXHViMGI4IFx1YWM4M1x1Yzc3NCBcdWM4NzRcdWM3YWNcdWQ1NWNcdWIyZTQuIFx1YjYxMFx1ZDU1YyBcdWM3NzQgXHViM2M0XHViODVjXHViMjk0IFx1YmFhOVx1YzgwMVx1YzljMCBcdWQ2YzRcdWJjZjRcdWI0ZTQgXHVjOTExIFx1YzgwMVx1YzViNFx1YjNjNCAxXHVhYzFjXHViODVjIFx1ZDVhNVx1ZDU1OFx1YjI5NCBcdWNkNWNcdWIyZTggXHVhY2JkXHViODVjXHVjNzU4IFx1Yzc3Y1x1YmQ4MFx1Yzc3NFx1YjJlNC48XC9wPlxyXG4iLCJvdXRwdXQiOiI8cD5cdWQxNGNcdWMyYTRcdWQyYjggXHVjZjAwXHVjNzc0XHVjMmE0XHViOWM4XHViMmU0PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+XHVjNzg1XHViODI1XHVjNWQwXHVjMTFjIFx1YzhmY1x1YzViNFx1YzljNCBcdWJhYTlcdWM4MDFcdWM5YzAgXHVkNmM0XHViY2Y0XHViNGU0IFx1YzkxMSBcdWJkODhcdWFjMDBcdWIyYTVcdWQ1NWMgXHVhY2JkXHVjNmIwXHViNGU0XHVjNzQ0IFx1YzgxY1x1YzY3OFx1ZDU1YyBcdWJhYTlcdWM4MDFcdWM5YzBcdWI0ZTRcdWM3NDQgXHVhY2Y1XHViYzMxXHVjNzNjXHViODVjIFx1YmQ4NFx1YjlhY1x1YzJkY1x1ZDBhOCBcdWM2MjRcdWI5ODRcdWNjMjhcdWMyMWNcdWM3NTgmbmJzcDtcdWM4MTVcdWMyMThcdWI0ZTRcdWI4NWMgXHVjZDljXHViODI1XHVkNTVjXHViMmU0LjxcL2xpPlxyXG48XC91bD5cclxuIiwiaGludCI6IiIsIm9yaWdpbmFsIjoiMCIsImh0bWxfdGl0bGUiOiIwIiwicHJvYmxlbV9sYW5nX3Rjb2RlIjoiS29yZWFuIn0seyJwcm9ibGVtX2lkIjoiOTM3MCIsInByb2JsZW1fbGFuZyI6IjEiLCJ0aXRsZSI6IkRlc3RpbmF0aW9uIFVua25vd24iLCJkZXNjcmlwdGlvbiI6IjxwPllvdSBhcmUgYWdlbnQgQjEwMC4gQSBwYWlyIG9mIHByb21pbmVudGx5IGRyZXNzZWQgY2lyY3VzIGFydGlzdHMgaXMgdHJhdmVsaW5nIG92ZXIgdGhlIHJvYWRzIG9mIHRoZSBjaXR5IGFuZCB5b3VyIG1pc3Npb24gaXMgdG8gXHVmYjAxbmQgb3V0IHdoZXJlIHRoZXkgYXJlIGhlYWRlZC4gQWxsIHdlIGtub3cgaXMgdGhhdCB0aGV5IHN0YXJ0ZWQgYXQgcG9pbnQgcyBhbmQgdGhhdCB0aGV5IGFyZSBoZWFkaW5nIGZvciBvbmUgb2Ygc2V2ZXJhbCBwb3NzaWJsZSBkZXN0aW5hdGlvbnMuIFRoZXkgYXJlIGluIHF1aXRlIGEgaHVycnksIHRob3VnaCwgc28gd2UgYXJlIHN1cmUgdGhleSB3aWxsIG5vdCB0YWtlIGEgZGV0b3VyIHRvIHRoZWlyIGRlc3RpbmF0aW9uLjxcL3A+XHJcblxyXG48cD5BbGFzLCBwcm9taW5lbnRseSBkcmVzc2VkIGFzIHRoZXkgbWF5IGJlLCB0aGUgZHVvIGlzIG5vd2hlcmUgdG8gYmUgc2Vlbi4gRm9ydHVuYXRlbHksIHlvdSBoYXZlIGFuIGV4Y2VwdGlvbmFsIHNlbnNlIG9mIHNtZWxsLiBNb3JlIHNwZWNpXHVmYjAxY2FsbHk6IHlvdXIgbm9zZSB3aWxsIG5ldmVyIGxldCB5b3UgZG93bi4gWW91IGNhbiBhY3R1YWxseSBzbWVsbCB0aGV5IGhhdmUgdHJhdmVsZWQgYWxvbmcgdGhlIHJvYWQgYmV0d2VlbiBpbnRlcnNlY3Rpb25zIGcgYW5kIGguPFwvcD5cclxuXHJcbjxwPldoZXJlIGlzIHRoZSBlbHVzaXZlIGR1byBoZWFkZWQ/IE9yIGFyZSB3ZSBzdGlsbCBub3Qgc3VyZT88XC9wPlxyXG5cclxuPHA+PGltZyBhbHQ9XCJcIiBzcmM9XCJcL3VwbG9hZFwvaW1hZ2VzXC9kZXN0aW5hdGlvbi5wbmdcIiBzdHlsZT1cImhlaWdodDoyMzBweDsgd2lkdGg6MjM2cHhcIiBcLz48XC9wPlxyXG5cclxuPHA+QSB2aXN1YWwgcmVwcmVzZW50YXRpb24gb2YgdGhlIHNlY29uZCBzYW1wbGUuIFRoZSBkdW8gaXMgdHJhdmVsbGluZyBmcm9tIHRoZSBncmF5IGNpcmNsZSB0byBvbmUgb2YgdGhlIHR3byBibGFjayBjaXJjbGVzLCBhbmQgeW91IHNtZWxsZWQgdGhlbSBvbiB0aGUgZGFzaGVkIGxpbmUsIHNvIHRoZXkgY291bGQgYmUgaGVhZGluZyB0byA2LjxcL3A+XHJcbiIsImlucHV0IjoiPHA+T24gdGhlIFx1ZmIwMXJzdCBsaW5lIG9uZSBwb3NpdGl2ZSBudW1iZXI6IHRoZSBudW1iZXIgb2YgdGVzdCBjYXNlcywgYXQgbW9zdCAxMDAuIEFmdGVyIHRoYXQgcGVyIHRlc3QgY2FzZTo8XC9wPlxyXG5cclxuPHVsPlxyXG5cdDxsaT5PbmUgbGluZSB3aXRoIHRocmVlIHNwYWNlLXNlcGVyYXRlZCBpbnRlZ2VycyBuLCBtIGFuZCB0ICgyICZsZTsgbiAmbGU7IDIgMDAwLCAxICZsZTsgbSAmbGU7IDUwIDAwMCBhbmQgMSAmbGU7IHQgJmxlOyAxMDApOiB0aGUgbnVtYmVyIG9mIGludGVyc2VjdGlvbnMgaW4gdGhlIGNpdHksIHRoZSBudW1iZXIgb2YgaW5kaXZpZHVhbCByb2FkcyBiZXR3ZWVuIHRob3NlIGludGVyc2VjdGlvbnMsIGFuZCB0aGUgbnVtYmVyIG9mIHBvc3NpYmxlIGRlc3RpbmF0aW9ucyByZXNwZWN0aXZlbHkuPFwvbGk+XHJcblx0PGxpPk9uZSBsaW5lIHdpdGggdGhyZWUgc3BhY2Utc2VwZXJhdGVkIGludGVnZXJzIHMsIGcgYW5kIGggKDEgJmxlOyBzLCBnLCBoICZsZTsgbik6IHRoZSBpbnRlcnNlY3Rpb24gdGhlIGR1byBzdGFydGVkIGZyb20gYW5kIHRoZSB0d28gaW50ZXJzZWN0aW9ucyBiZXR3ZWVuIHdoaWNoIHRoZSBkdW8gaGFzIHRyYXZlbGVkLCB3aXRoIGcgJm5lOyBoLjxcL2xpPlxyXG5cdDxsaT5tIGxpbmVzIHdpdGggdGhyZWUgc3BhY2Utc2VwYXJhdGVkIGludGVnZXJzIGEsIGIgYW5kIGQgKDEgJmxlOyBhICZsdDsgYiAmbGU7IG4gYW5kIDEgJmxlOyBkICZsZTsgMSAwMDApLCBpbmRpY2F0aW5nIHRoYXQgdGhlcmUgaXMgYSBiaWRpcmVjdGlvbmFsIHJvYWQgYmV0d2VlbiBpbnRlcnNlY3Rpb25zIGEgYW5kIGIgb2YgbGVuZ3RoIGQuPFwvbGk+XHJcblx0PGxpPnQgbGluZXMgd2l0aCBvbmUgaW50ZWdlciB4ICgxICZsZTsgeCAmbGU7IG4pOiB0aGUgcG9zc2libGUgZGVzdGluYXRpb25zLiBBbGwgcG9zc2libGUgZGVzdGluYXRpb25zIGFyZSBkaXN0aW5jdCBhbmQgdGhleSBhcmUgYWxsIGRpZmZlcmVudCBmcm9tIHMuPFwvbGk+XHJcbjxcL3VsPlxyXG5cclxuPHA+VGhlcmUgaXMgYXQgbW9zdCBvbmUgcm9hZCBiZXR3ZWVuIGEgcGFpciBvZiBpbnRlcnNlY3Rpb25zLiBPbmUgb2YgdGhlIG0gbGluZXMgZGVzY3JpYmVzIHRoZSByb2FkIGJldHdlZW4gZyBhbmQgaC4gVGhpcyByb2FkIGlzIGd1YXJhbnRlZWQgdG8gYmUgb24gYSBzaG9ydGVzdCBwYXRoIHRvIGF0IGxlYXN0IG9uZSBvZiB0aGUgcG9zc2libGUgZGVzdGluYXRpb25zLjxcL3A+XHJcbiIsIm91dHB1dCI6IjxwPlBlciB0ZXN0IGNhc2U6PFwvcD5cclxuXHJcbjx1bD5cclxuXHQ8bGk+T25lIGxpbmUgd2l0aCBvbmUgb3IgbW9yZSBzcGFjZS1zZXBhcmF0ZWQgaW50ZWdlcnMsIGluZGljYXRpbmcgdGhlIGRlc3RpbmF0aW9ucyB0aGF0IHRoZSBkdW8gY2FuIHN0aWxsIGJlIGhlYWRlZCBmb3IsIGluIGluY3JlYXNpbmcgb3JkZXIuPFwvbGk+XHJcbjxcL3VsPlxyXG4iLCJoaW50IjoiIiwib3JpZ2luYWwiOiIxIiwiaHRtbF90aXRsZSI6IjAiLCJwcm9ibGVtX2xhbmdfdGNvZGUiOiJFbmdsaXNoIn1d
접근 방법
- 각 테스트 케이스마다 다익스트라 최단경로 알고리즘을 진행한다.
- 단, 매 테스트 케이스를 시작할 때마다 목적지 후보의 지점을 오름차순으로 정렬한다. 그리고 다익스트라 최단경로 알고리즘을 진행할때마다 모든 지점에 대해 g와 h의 교차로를 지났는 지 체크해가며 알고리즘을 진행한다.
코드
# https://www.acmicpc.net/problem/9370
# 접근 방법
# 각 테스트 케이스마다 다익스트라 최단경로 알고리즘을 진행한다.
# 단, 매 테스트 케이스를 시작할 때마다 목적지 후보의 지점을 오름차순으로 정렬한다. 그리고 다익스트라 최단경로 알고리즘을 진행할때마다 모든 지점에 대해 g와 h의 교차로를 지났는 지 체크해가며 알고리즘을 진행한다.
def dijkstra(start):
distance[start] = 0
q = []
heapq.heappush(q, [0, start])
while q:
dist, now = heapq.heappop(q)
if distance[now] < dist:
continue
for x in graph[now]:
cost = dist + x[1]
if distance[x[0]] > cost:
heapq.heappush(q, [cost, x[0]])
distance[x[0]] = cost
check[x[0]] = check[now]
if (g == now and h == x[0]) or (h == now and g == x[0]):
check[x[0]] = 1
elif distance[x[0]] == cost:
check[x[0]] = max(check[x[0]], check[now])
if (g == now and h == x[0]) or (h == now and g == x[0]):
check[x[0]] = 1
import heapq, sys
input = sys.stdin.readline
for tc in range(int(input())):
n, m, t = map(int, input().split())
s, g, h = map(int, input().split())
graph = [[] for _ in range(n+1)]
for _ in range(m):
a, b, d = map(int, input().split())
graph[a].append([b, d])
graph[b].append([a, d])
departure = []
for _ in range(t):
departure.append(int(input()))
departure.sort()
INF = int(1e9)
distance = [INF for _ in range(n+1)]
check = [0 for _ in range(n+1)]
dijkstra(s)
for x in departure:
if check[x]:
print(x, end=' ')
print()